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Analyzed is the general methodology of solving problems in transient heat conduction in
plane finite-length and infinitely long wedges under various boundary conditions with re-
spect to heat transfer at the surfaces, Closed solutions are obtained for special cases.

Problems of transient heat conduction in an infinitely long wedge under constant boundary tempera-
tures have been solved in [1-4]. With the aid of the Kantorovich— Lebedev integral transformation, the.
problem was analyzed in [6, 7] with boundary conditions of the first kind and the third kind with respect to
heat transfer, but with the solutions limited in terms of the wedge angle and, besides, rather unwieldy for
numerical computations, A similar problem was considered in [8], but there the author inaccurately for-
mulated the boundary conditions of the third kind with respect to heat transfer at the wedge surfaces,

Very relevant, in the practical sense, is an analysis of transient temperature fields in a plane wedge
when the temperatures at its boundaries are variable in time and in space, The stipulation of such bound-
ary conditions makes it possible to analyze the thermal state of a wedge element under actual or very
nearly actual conditions of heating and cooling. A stipulation of boundary conditions of the first kind with
respect to heat transfer, i.e., a stipulation of boundary temperatures, makes it possible to correlate the
calculated temperature field with thermocouple readings over the boundary surfaces, Thus, solutions
obtained under boundary conditions with respect to heat transfer which vary in time and space can be ap-
plied directly to the analysis of the thermal state in a wedge specimen under actual heating and cooling
conditions.

In this study the authors use the G. A. Grinberg method to arrive at a solution for a wedge with any
angle and bounded by a circular arc of radius r = R, also for an infinitely long plane wedge where the bound~
ary conditions of the third kind with respect to heat transfer vary with time and along the radius.

We consider a plane homogeneous wedge with an arbitrary angle o (0 = ¢ = @) and bounded by a cir-
cular arc of radius r =R (0 = r = R) (Fig.1). The temperatures at the wedge boundaries g =0 and ¢ =
are specified as known functions of the coordinate r and time 7, while the heaf transfer at the boundary r
= R to a medium at a zero reference temperature follows Newton's Law with % denoting the relative coeffi-
cient of heat transfer. For simplicity, the initial temperature will be assumed constant and equal to t;.

The problem of determining the temperature field of a bounded
wedge reduces to integrating the differential equations of transient heat
conduction [9]:
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Fig. 1. Choice of coordinate t(r, @, 0) =1, = const (2)
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and the boundary conditions
ir, 0, ©) = £ {r, %),
Hr, o, ©) = 1, (r, 1),
ot

E‘J{—'Al‘:O at r = R. (4)

The condition of boundedness of the temperature t(r, ¢, 7)at r — 0 enters here naturally. The symbols
in (1)-(4) are conventional [9].

(3)

We establish a system of eigenfunctions with respect to the angular coordinate ¢, orthonormalized
on the interval [0, o], which will represent the solution to the Sturm — ILicuville homogeneous system in the
form [5]

@, (@) = I/—i—smim—?)—“w (m=0,1,2,...). (5)

The solution to the original equation (1) will be expressed in terms of a series expansion with respect to
eigenfunctions (5)

tHr, o, 1) = £ (1, ’c)CD (). (6)
-2
Then, for the coefficients in (6) we obtain the followmg differential equations
ot Ft, . 1 o, v, ) F
ki3 . m [ L .S - m 7
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with the initial condition
‘/ 2 ey (8)
v
and the boundary condition on the circular arc r =

6tm _'I_ Xtm = 0. (9)
or

Here

{10)

F (r, ©) = 4 (— 1)y (r, D]

For the boundary-value problem (7 )—(9) we will use the finite Hankel integral transformation with respect
to variable r, which is defined according to [10] as follows:

R
T Ay T) = J i, (r, 1) 4, (A1) dr, {11)
9
with &) denoting the positive roots of the characteristic equation

My (AR) + xJ, (AR) = 0. {12)

The inverse transform of (11) is [10]

A
9= 2 o)+ Ry e 42

with summation over all roots of Eq. (12).

The use of the integral Eq. (11) in the problem (7)-(9) leads to a nonhomogeneous ordinary differen-
tial equation with respect to function Ty, (N, 7), which is solved by an inverse Hankel transformation ac-
cording to (13) and yields the sought temperature field in a bounded wedge:
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R - R
—u)ldu + l/-—i— . —i;’—[l +(— 1" Sr.fv (Ayr) dr exp (— a?AiT) | (14)
1]

As an example, we will now consider the case of boundary temperatures varying linearly with time:
tr, 0, )y =4 (r, 1) = {; -+ vr,
: (15)
U, o, 1) = t(r, T) =1, + U
For simplicity, we assume that heating occurs symmetrically with respect to the wedge angle bisector,

Performing the appropriate transformations by the described procedure, we obtain the temperature
field of a bounded wedge under conditions (15);
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Here Sx’y(z) are Lomme] functions [11, 12]. ’

Of practical significance is the case where the boundary conditions at the wedge edges are given as

w2
L ) =1t 1) = (t(,—{—v'r)( 1— ‘1;2 ) (18)

i.e., when the boundary temperatures decrease parabolically (second-degree parabola with the parameter
c) along the radius (with distance from the wedge point) and linearly with time, The temperature field in

this case will be
4 2V T I, () .
H(r, 9, 1) = - SR sin v
oo = 55 2 2 EOR) + 4, R e
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(MR -+ v%0) Qs (hy) — VRQu (), ~*&
T 9 Z(Oe
"~ vALR?
where, as before, Q;(A;) and Q,(Ay) are determined from (17).

(19)

The described method of solving transient heaf conductionproblems in wedges can be effectively ap-
plied to the solution of analogous problems involving an infinitely long plane wedge with variable boundary
conditions of the first kind with respect to heat transfer, For the case of an infinitely long wedge, R — «,
modifications of this method consist only in performing the Hankel integral transformation (11) with the
limit on variable r moved to infinity [11]:

Thih 1) = 3: rt (r, 1) J, (A dr (20)
b

and the inverse transformation

£, 1) = ‘{ AT, (A ) J, (M) dh. (21)
[}

Let now the boundary temperatures of a wedge vary linearly with time and exponentially along the
radius r, i.e.,
t(l’, 0, T) = tl (l‘, ‘L‘) = (to + Zﬂ') e, (22)
Lr, a, 1) =b(r, ©) = {{ + vr) eV,
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The initial temperature will be assumed to decrease exponentially along the radius r:
tr, @, 0) = te=v,
Then the temperature field of an infinitely long plane wedge under the given conditions will be

(f, +or)e¥' T i
2 . 2
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T e (@) ) (ViEe L T qb( 2 "' (23)
———r2——~—-> sin v

tatt (datyt + 1) ¢
Here
AR) = F(v—;l) . 92\71—‘('\7—{‘ Il L _LP(I\:-{-VB,) ’
(v——l)l‘(?—l) e —1)1*(7) E (.2_+1)

I'(z) is the gamma function, and ®(x, y; w) is the degenerated hypergeometrical function in [12].

The resulting expressions (16) and (19) for the temperature field of a bounded plane wedge and (23)
for an infinitely long plane wedge comprise series of known tabulated functions and can, therefore, be used
for analyzing the thermal state of a wedge under given boundary conditions with respect to heat transfer.
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